## Math Placement Exam

### Who Takes the Exam?

Most students are required to take the math placement exam. However, you are waived if:

- You have transferred in a math course from another college or university equivalent to a 100-level or above math course at IU South Bend.
- You took an IU South Bend math course as a high school student and received credit for it.
- You received a passing score on an Advanced Placement (AP) exam.
- You took the math placement exam at IU Bloomington or IUPUI (we do not accept placement exam scores from any other college/university).

### Exam Format

You have 90 minutes to complete the online exam, which consists of the following:

Part A: Advanced Arithmetic (15 problems)

Part B: Beginning Algebra (15 problems)

Part C: College Algebra and Graphs (15 problems)

Part D: Pre-Calculus and Trigonometry (18 problems)

Although the exam is designed so a calculator is not absolutely necessary, you may still use one. Keep in mind that calculators with built-in algebra systems (such as the TI-89 and TI-92) may not be used.

Since many students have not had previous instruction in some of the higher-level math concepts, not everyone is able to complete the exam, which is okay. If you randomly guess at the answers to the problems you do not understand, you have a fairly good chance of guessing correctly, which could result in your being placed in a math class for which you are not prepared. Keep in mind this is not a pass/fail exam, its purpose is to ensure that you are placed into the appropriate math course.

### Can I retake the Math Exam?

The math exam can be taken once a month until you enroll in a math course.

Exam Results

The results are used by your advisor to place you into the appropriate course for your skill level, which are outlined below:

Score |
Math Course in which to enroll |

Level 0 |
You are required to take an enhanced version of MATH-A100 Fundamentals of Algebra (see advisor for details as the course starts earlier than the regular semester and finishes later). |

Level 1 | You are required to take an enhanced version of MATH-A100 Fundamentals of Algebra (see advisor for details as the course starts earlier than the regular semester and finishes later). |

Level 2 |
You must successfully complete MATH-A100 Fundamentals of Algebra to advance to Level 3. A100 is a graded course. Consult with your advisor as to how it counts towards your major requirements. |

Level 3 |
You may enroll in any of the following:
You must successfully complete M107 with a C- or higher to advance to Level 4. |

Level 4 |
You may enroll in M125 Pre-Calculus or M115 Pre-Calculus and Trigonometry. You can move to Level 5 by successfully completing M125 with a C- or higher. You can move to Level 6 by successfully completing M115 (or its two-semester equivalent, M125 & M126, with a C- or higher. |

Level 5 |
You may enroll in M119 Brief Survey of Calculus or M126 Trigonometric Functions. You can move to Level 6 by successfully completing M126 or M115 with a C- or higher. |

Level 6 | You may enroll in M215 Calculus I. |

**Note:** Please see your academic advisor prior to enrolling in a math course at IU South Bend, particularly if you placed at Levels 3, 4, 5, or 6. Your first math course placement varies depending on your intended major.

**Complete list of topics covered on the math placement exam.**

*Part A: Advanced Arithmetic*

Meaning of fractions and decimals

Operations on fractions and decimal numbers

Meaning and use of percents and proportions

Operations and signed numbers

Square roots and cube roots

The Pythagorean theorem

Area and perimeter of rectangles and triangles

*Part B: Beginning Algebra*

Evaluation of expressions and equations

Solution of linear equations

Meaning of integer exponents

Application of rules of integer exponents

Operations on polynomials

Factoring quadratic polynomials

*Part C: College Algebra and Graphs*

Slope and y-intercept of a line

Producing and interpreting graphs of linear and quadratic equations

Finding the intersection of two lines algebraically

Solving and interpreting linear inequalities

Graphing equations involving the absolute value of linear expressions

Solving equations involving the absolute value of linear expressions

Solving quadratic equations

*Part D: Pre-Calculus and Trigonometry*

The concept of function

Domain and range of functions

Using and interpreting functional notation

Composition of functions

Transformations of graphs of functions

Interpreting the graphs of functions

Inverse functions

Classes of elementary functions: polynomial, rational, exponential, logarithmic, trigonometric

**Questions**

If you have any questions, please contact the Gateway Information Center.